Проверка наличия цепи между заземлителями и заземляемыми
элементами электроустановок («металлосвязь»).


Цель проверки.

Проверка сопротивления и механической надёжности соединений подлежащих заземлению частей электроустановки с заземляющими элементами, проводниками.
Наличие качественной «металлосвязи» является необходимым условием для обеспечения надёжного срабатывания аппаратов защиты при замыкании фазы на корпус.


Проведение проверки.
Проверка производится в соответствии с:
раздел 1.7 ПУЭ; приложение 3, п.26, п.28 ПТЭЭП; ГОСТ Р 50571.16; ГОСТ 12.2.007.0-75 п.3.3.7.

Производится общий визуальный осмотр проводников и соединений системы выравнивания потенциалов, присоединений к системе заземления.
Сварные соединения проверяются простукиванием.
Измеряются переходные сопротивления контактов. Значение не должно превышать 0,05Ом.
Значения переходных сопротивлений заземляющих проводников в пределах одного изделия не должно превышать 0,1Ом. Например, в эл. шкафу от металлической двери до болта заземления, к которому
присоединён проводник от двери.

Результаты проверки «металлосвязи» оформляются протоколом установлен
Проверка заземления. Измерение сопротивления заземляющих устройств
 

Стоимость измерения сопротивления заземленияИзмеритель сопротивления заземления
совместно с другими измерениями
(Прайс, пункт 1.10)


Стоимость измерения сопротивления заземления
отдельно от других измерений

Земля

Землю можно представить как гигантский проводник. Все электрические процессы, даже изолированные, имеют относительно земли некоторый потенциал. Можно сказать, что земля является общим проводником для всех электрических процессов. Присоединение к ней непосредственно или через промежуточную среду возможно в любой точке земного шара. Таким образом, земля отлично подходит в качестве «нулевого» проводника при передаче электроэнергии, а также для защиты от поражения электрическим током, а так же для некоторых других задач (в данной статье не рассматриваются).

Заземление

Заземление - намеренное соединение с землёй токоведущих частей (п.1.7.8 ПУЭ) электроустановок или любых проводящих (нетоковедущих) частей (п.1.7.7 ПУЭ) электроустановок, зданий, сооружений, разного оборудования в рабочих или защитных целях.

Назначение заземления

Назначение заземления: рабочее и защитное; основное и дополнительное.

При выполнении рабочей функции через заземление протекает рабочий ток.

При выполнении защитной функции возможно: протекание через «землю» тока короткого замыкания при замыкании фазы на заземлённый элемент, или протекание тока атмосферного разряда при использовании заземления в системе молниезащиты. Протекание тока ограничено временем срабатывания аппаратов защиты или временем протекания тока.
Выполнение защитной функции обусловлено:
- снижением напряжения (напряжения прикосновения) на проводящих частях при замыкании на них фазы до безопасного значения (при т.н. косвенном прикосновении);
- обеспечением стекания атмосферного заряда при молниезащите.
При использовании выключателей, управляемых дифференциальным током (УЗО), так же реализуется функция защиты от замыкания «рабочего нулевого проводника» (нуля) на «землю».

Ещё две функции заземления: снижение уровня электромагнитных «помех и наводок» проникающих в устройства извне, и снижение уровня «несанкционированных» электромагнитных излучений передаваемых устройствами вовне. Данные функции тоже влияют на работу устройств и их безопасность.

Возможно совмещение функций заземления и применение одного заземляющего устройства для разных установок. Но необходимо принимать во внимание, что в первую очередь должны удовлетворяться требования для реализации защитных функций.


Устройство заземления

Заземление – это устройство, состоящее из:
- заземлителей, обеспечивающих контакт с землёй;
- заземляющих проводников, обеспечивающих соединение между заземлителями и заземляемыми частями.

Заземлители делятся на «искусственные» и «естественные». Искусственные заземлители – элементы, предназначенные исключительно для заземления. В качестве естественных заземлителей могут выступать: проложенные в земле металлические трубы (кроме трубопроводов горючих жидкостей и газов); имеющие контакт с землёй железобетонные и металлические части зданий и строений и т.д. Использование для заземления естественных заземлителей не должно приводить к их повреждению или к повреждению связанного с ними оборудования.

Заземление зачастую является весьма сложным устройством. Схема и глубина расположения, количество и материал, прочие характеристики заземлителей и проводников заземления зависят от назначения заземления, свойств грунта, и ряда других вводных.


Требования к заземлению

Качество заземления, соответствие его параметров требованиям, является важным условием для работоспособности установок и их безопасности.

Наиболее важной характеристикой заземления является его сопротивление – Rза. Сопротивление заземления измеряется в Омах.

При использовании заземления в электроустановках до 1000В с глухозаземлённой нейтралью, должно удовлетворяться требование:

Линейное напряжение 3х фазного источника, В Линейное напряжение 1х фазного источника, В Сопротивление заземления, Ом
660 380  <15(2*)
380 220  <30(4*) 
220 127  <60(8*) 

*Сопротивление заземления принимается с учётом повторных (дополнительных) заземлений. При удельном электрическом сопротивлении грунта (q) выше 100 Ом•м, допускается увеличение значения сопротивления заземления в q/100 раз относительно нормы, но не более чем в 10 раз.

При использовании заземления в электроустановках до 1000В с изолированной нейтралью, должно удовлетворяться требование:

Мощность источника питания, Квт Сопротивление заземления, Ом
до 100  <50/Iз , но не более 40Ом
больше 100  <50/Iз , но не более 10Ом 

где: 50 – безопасное напряжение прикосновения; Iз – ток замыкания на землю, А.

При заземлении в электроустановках от 3 до 35 кВ с изолированной нейтралью, сопротивление заземления должно соответствовать:

Rза<250/Iз (но не более 10 Ом)

Если заземление применяется одновременно для сетей напряжением и выше и ниже 1000В, то:

Rза<125/I з

Расчетный ток замыкания на землю, с достаточной точностью, может быть вычислен по формуле:

Iз=√3U(35Lк+Lв)/350

где: U – фазное напряжение сети, кВ; Lк – общая протяжённость кабельных линий, подключенных к сети, км; Lв - общая протяжённость воздушных линий, подключенных к сети, км.

При q, превышающем 500 Ом•м, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от q.

Сопротивление дополнительного заземления не нормируется (см. пункт «Измерение сопротивления заземления»).

Должна обеспечиваться достаточная прочность и устойчивость к воздействиям окружающей среды элементов заземления и их соединений.

Величина сопротивления заземления должна оставаться в пределах нормы, независимо от изменений состояния грунта и погодных условий.


Проведение испытаний заземления

Испытания производятся в соответствии с требованиями гл. 1.8. ПУЭ и пр. 3, 3.1 ПТЭЭП.

Проводится визуальный осмотр.
Проверяется механическая прочность соединений, сварные соединения проверяются простукиванием.
Измеряется сопротивление заземления.

При проведении испытаний, с целью безопасности испытательного персонала, важно предупредить возможность замыканий фазы на землю.

Измерение сопротивления заземления


Измерение сопротивления заземления проводится на контуре, состоящем из устройства заземления и земли.

Существует несколько методов измерения. Наиболее распространён т.н. "трёхточечный" метод.

Упрощённое описание "трёхточечного" м етода:
- На контур "устройство заземления - земля" подаётся испытательный ток (Iизм) от источника тока, подключаемого к точке, считающейся точкой присоединения к заземлению (ЭЗ), и к удалённому электроду, соединённому с землёй, т.н. токовому электроду (ЭТ).
- На прямой, между ЭЗ и ЭТ располагается третий электрод, т.н. электрод напряжения (ЭН).
- Между ЭЗ и ЭН измеряется напряжение (Uизм).
- Сопротивление заземления расчитывается по формуле: Rза=Uизм/Iизм.


Схема "трёхточечного" м етода:


Схема измерения сопротивления заземления трёхточечным методом

Применение современных приборов позволяет получать значение сопротивления заземления без выполнения промежуточных вычислений.

Измерения сопротивления заземления рекомендуется проводить при условии наибольшего сопротивления грунта, то есть в сухую погоду или при наибольшем промерзании. Если это условие невозможно реализовать, то к полученным результатам применяются поправочные коэффициенты.
При измерении сопротивления дополнительного заземления поправочные коэффициенты не применяются (кроме дополнительных заземлений воздушных линий).
Для получения точных результатов важно обеспечить хороший контакт при подключении измерительных проводов к заземлению и электродам, а так же и между электродами и землёй.

Результаты измерений сопротивления заземления оформляются протоколом соответствующей формы.

Если результаты измерений не соответствуют нормативным, то производится измерение удельного сопротивления грунта. Если измеренное значение находится в приемлемых пределах, то можно увеличить количество или длину вертикальных заземлителей. Если неудовлетворительное сопротивление заземления является результатом большого удельного сопротивления грунта, то может быть принято решение о использовании устройства заземления с повышенным значением сопротивления. В некоторых случаях дефект «повышенного сопротивления заземления» можно исправить с помощью специальных химических составов, предназначенных для уменьшения удельного сопротивления грунта.

Стоимость проверки заземления (Прайс, пункт 1.10)